Answer:
P ≈ 48.89°(nearest hundredth)
Step-by-step explanation:
The triangle PQR forms a right angle triangle since angle R is 90°. The triangle has an hypotenuse , adjacent and opposite side.
Using the SOHCAHTOA principle one can find the sine ratio of angle P. Let us designate where each side represent.
opposite side(QR) = 55
adjacent side(PR) = 48
hypotenuse(PQ) = 73
sin P = opposite/hypotenuse
sin P = 55/73
P = sin⁻¹ 55/73
P = sin⁻¹ 0.75342465753
P = 48.8879095605
P ≈ 48.89°(nearest hundredth)
Answer:
μ = 5.068 oz
Step-by-step explanation:
Normal distribution formula to use the table attached
Z = (x - μ)/σ
where μ is mean, σ is standard deviation, Z is on x-axis and x is a desired point.
98% of 6-oz. cups will not overflow means that the area below the curve is equal to 0.49; note that the curve is symmetrical respect zero, so, 98% of the cases relied between the interval (μ - some value) and (μ + some value)].
From table attached, area = 0.49 when Z = 2.33. From data, σ = 0.4 oz and x = 6 oz (maximum capacity of the cup). Isolating x from the formula gives
Z = (x - μ)/σ
2.33 = (6 - μ)/0.4
μ = 6 - 2.33*0.4
μ = 5.068
This means that with a mean of 5 oz and a standard deviation of 0.4 oz, the machine will discharge a maximum of 6 oz in the 98% of the cases.
Answer/Step-by-step explanation:
Part A: Net A is the correct net. If we decide to fold the net, we'd get the shape of the prism. Folding back net B won't give us the shape of the prism because of the position and arrangement of the right triangular bases.
Part B:
AB = 3in
BC = 5 in
CD = 9.4 in
Part C: surface area of the prism can be calculated by calculating the area of each part of the net, and summing them together as follows,
Area of the 2 triangular bases = 2(½*base*height of triangle) = 2(½*4*3) = 2*2*3 = 12 in²
Area of the three rectangles =
Surface area of prism = 12 + 112.8 = 124.8 in²