Answer:
Explanation:
From the information given:
The cell potential on mars E = + 100 mV
By using Goldman's equation:
Let's take a look at the impermeable cell with respect to two species;
and the two species be Na⁺ and Cl⁻
where;
z = ionic charge on the species = + 1
F = faraday constant
∴
For [Cl⁻]:
For [Na⁺]:
Answer: More evaporation of the water due to warmer temperatures causes low, thick clouds to form
Explanation:
Options missing:
a) The pH of the environment should be relatively high.
b) The pH of the environment should be relatively low.
c) The pH of the environment would not matter.
d) The environment should be set to the biochemical standard state.
Answer:
a) The pH of the environment should be relatively high.
Explanation:
For optimal function an enzyme needs a certain environment or condition. As temperature increases, the rate of enzyme activity also increases. As temperature increases toward its optimum point of 37 degrees Celsius (98.6 F), hydrogen bonds relax and make it easier for the hydrogen peroxide molecules to bind to the catalase.
The part of the enzyme where this reaction takes place is called the active site. A temperature that is higher or lower than this optimum point changes the shape of the active site and stops the enzyme from working. This process is called denaturation.
Enzyme pH levels also change the shape of the active site and affect the rate of enzyme activity. Each enzyme has its own optimal range of pH in which it works most effectively. In humans, catalase works only between pH 7 and pH 11. If the pH level is lower than 7 or higher than 11, the enzyme becomes denaturated and loses its structure. The liver sustains a neutral pH of about 7, which creates the best environment for catalase and other enzymes.
General acid catalysis would require histidine to be protonated at pH values (pH 8.0) optimal for enzymatic activity which is relatively high.