Answer:
a) t=1s
y = 10.1m
v=5.2m/s
b) t=1.5s
y =11.475 m
v=0.3m/s
c) t=2s
y =10.4 m
v=-4.6m/s (The minus sign (-) indicates that the ball is already going down)
Explanation:
Conceptual analysis
We apply the free fall formula for position (y) and speed (v) at any time (t).
As gravity opposes movement the sign in the equations is negative.:
y = vi*t - ½ g*t2 Equation 1
v=vit-g*t Equation 2
y: The vertical distance the ball moves at time t
vi: Initial speed
g= acceleration due to gravity
v= Speed the ball moves at time t
Known information
We know the following data:
Vi=15 m / s
t=1s ,1.5s,2s
Development of problem
We replace t in the equations (1) and (2)
a) t=1s
=15-4.9=10.1m
v=15-9.8*1 =15-9.8 =5.2m/s
b) t=1.5s
=22.5-11.025=11.475 m
v=15-9.8*1.5 =15-14.7=0.3m/s
c) t=2s
= 30-19.6=10.4 m
v=15-9.8*2 =15-19.6=-4.6m/s (The minus sign (-) indicates that the ball is already going down)
Average velocity = (800+1600)/(4+10)
= 171.42m/s
Answer:
B. has a smaller frequency
C. travels at the same speed
Explanation:
The wording of the question is a bit confusing, it should be short/long for wavelength and low/high for frequency. I assume low wavelength mean short wavelength.
All sound wave travel with the same velocity(343m/s) so wavelength doesn't influence its speed at all. It won't be faster or slower, it will have the same speed.
Velocity is a product of wavelength and frequency. So, a long-wavelength sound wave should have a lower frequency.
The option should be:
A. travels slower -->false
B. has a smaller frequency -->true
C. travels at the same speed --->true
D. has a higher frequency --->false
E. travels faster has the same frequency --->false
Answer:
Explanation:
When the car is under an accelerating force and hits a tree, the instant force received by the tree is the same force that is accelerating the car.
The accelerating force can be calculated using Newton's second law:
Where m is the mass of the car and a is the acceleration.
Answer:
As the roller coaster goes higher, more potential energy is increased in the roller coaster. Caused by gravity and the roller coaster's position, the potential energy is stored in the roller coaster. For example, this ball is at the top of a hill, where potential energy is at it's highest. Potential energy can be calculated by Potential Energy=Mass X Acceleration X Height.
Explanation: