Answer:
4x^2 + 8x + 4
4(x^2 + 2x + 1) - remove GCF of 4
4(x + 1)(x + 1) - factor
4(x + 1)^2 - collect like terms
Step-by-step explanation:
Then also expand it out by distributing:
21x^3 + 35x²
Form 1:
21x^3 + 35x² - unfactored
Form 2:
7x²(3x + 5) - factored with GCF of 7x² brought to the front
Update:
You could also multiply two binomials and make a quadratic.
Example:
(7x + 2)(3x + 5)
7x(3x + 5) + 2(3x + 5)
= 21x² + 35x + 6x + 10
= 21x² + 41x + 10
Answer:
0.1587
Step-by-step explanation:
Let X be the commuting time for the student. We know that . Then, the normal probability density function for the random variable X is given by
. We are seeking the probability P(X>35) because the student leaves home at 8:25 A.M., we want to know the probability that the student will arrive at the college campus later than 9 A.M. and between 8:25 A.M. and 9 A.M. there are 35 minutes of difference. So,
= 0.1587
To find this probability you can use either a table from a book or a programming language. We have used the R statistical programming language an the instruction pnorm(35, mean = 30, sd = 5, lower.tail = F)
Answer:
The correct answer is B
Step-by-step explanation:
Kinda complicated to explain, if you need me to then comment and I'll do it