The correct answer is a , i hope this helps out
Answer:
444444444444444
Step-by-step explanation:
Answer:
The volume of a rectangular prism is simply the product of its three dimensions: in your case, the volume of the prism is, given
x
,
(
x
+
6
)
(
x
−
2
)
(
x
−
1
)
.
A polynomial is a sum (with some coefficients) of powers of
x
, so, if we expand the product just written, we have
(
(
x
+
6
)
(
x
−
2
)
)
(
x
−
1
)
=
(
x
2
−
2
x
+
6
x
−
12
)
(
x
−
1
)
=
(
x
2
+
4
x
−
12
)
(
x
−
1
)
=
x
3
+
4
x
2
−
12
x
−
x
2
−
4
x
+
12
=
x
3
+
3
x
2
−
16
x
+
12
Which is a polynomial, and expresses the volume of the prism
Step-by-step explanation:
The volume of a rectangular prism is simply the product of its three dimensions: in your case, the volume of the prism is, given
x
,
(
x
+
6
)
(
x
−
2
)
(
x
−
1
)
.
A polynomial is a sum (with some coefficients) of powers of
x
, so, if we expand the product just written, we have
(
(
x
+
6
)
(
x
−
2
)
)
(
x
−
1
)
=
(
x
2
−
2
x
+
6
x
−
12
)
(
x
−
1
)
=
(
x
2
+
4
x
−
12
)
(
x
−
1
)
=
x
3
+
4
x
2
−
12
x
−
x
2
−
4
x
+
12
=
x
3
+
3
x
2
−
16
x
+
12
Which is a polynomial, and expresses the volume of the prism
Step-by-step explanation:
1. B is true
2 . I don't know
3.
Cos(2x) = cos^2(x) - sin^2(x) - cos(x)
but sin^2(x) = 1 - cos^2(x)
cos(2x) - cos(x) = cos^2(x) - (1 - cos^2(x) ) - cos(x)
cos(2x) - cos(x) = cos^2(x) - 1 + cos^2(x) - cos(x)
cos(2x) - cos(x) = 2cos^2(x) - 1 - cos(x)
cos(2x) - cos(x) = (2cos(x) + 1)(cos(x) - 1)
I think this is what you have asked for.