Answer:
The correct answer is 199.66 grams per mole.
Explanation:
Based on law of effusion given by Graham, a gas rate of effusion is contrariwise proportionate to the square root of molecular mass, that is, rate of effusion of gas is inversely proportional to the square root of mass. Therefore,
R1/R2 = √ M2/√ M1
Here rate is the rate of effusion of the gas expressed in terms of number of mole per uni time or volume, and M is the molecular mass of the gas.
Rate Q/Rate N2 = √M of N2/ √M of Q
The molecular mass of N2 or nitrogen gas is 28 grams per mole and M of Q is molecular mass of Q and based on the question Q needs 2.67 times more to effuse in comparison to nitrogen gas, therefore, rate of Q = rate of N2/2.67
Now putting the values we get,
rate of N2/2.67/rate of N2 = √28/ √M of Q
√M of Q = √ 28 × 2.67
M of Q = (√ 28 × 2.67)²
M of Q = 199.66 grams per mole
C- more than one light year or B-exactly one light year
Answer:
they would react to make aluminum oxide and nitrogen
Explanation:
hope this helps plz mark as brainliest
The age of the fossil given the present amount of Carbon-14 is given in the equation,
A(t) = A(o)(0.5)^t/h
where A(t) is the current amount, A(o) is the initial amount, t is time and h is the half-life. Substituting the known values to the equation,
A(t) / A(o) = 0.125 = (0.5)^(t/5730)
The value of t from the equation is 17190.
Thus, the age of the fossil is mostly likely to be 17190 years old.
Answer:
Explanation: E. 12 because it has the highest acidity rate.