Answer:
it Give only one of them a positive or negative charge
100 ml
100 ml of the stock solution is required to prepare the order.
We know that C1V1 = C2V2
where C1= 2%
V1 = 500ml
C2= 10%
V2 = ?
V2 = C1V1 / C2
= 500 * 2% / 10%
=100
V2 = 100 ml
<h3>What is meant by stock solution?</h3>
- A stock solution is a sizable amount of a typical reagent in a standardized concentration, like sodium hydroxide or hydrochloric acid.
- This phrase is frequently used in analytical chemistry while doing operations like titrations where it's crucial to employ precise solution concentrations.
<h3>What distinguishes a standard solution from a stock solution?</h3>
- The main distinction between stock solution and standard solution is that the former is a highly concentrated solution while the later is a solution whose concentration is precisely known.
- Because standard solutions frequently arrive as stock solutions, the phrases "stock solution" and "standard solution" are connected.
To learn more about stock solution preparation visit:
brainly.com/question/14667249
#SPJ4
Both answers are going to be C
To solve this problem we will apply the concepts of linear mass density, and the expression of the wavelength with which we can find the frequency of the string. With these values it will be possible to find the voltage value. Later we will apply concepts related to harmonic waves in order to find the fundamental frequency.
The linear mass density is given as,
The expression for the wavelength of the standing wave for the second overtone is
Replacing we have
The frequency of the sound wave is
Now the velocity of the wave would be
The expression that relates the velocity of the wave, tension on the string and linear mass density is
The tension in the string is 547N
PART B) The relation between the fundamental frequency and the harmonic frequency is
Overtone is the resonant frequency above the fundamental frequency. The second overtone is the second resonant frequency after the fundamental frequency. Therefore
Then,
Rearranging to find the fundamental frequency