a. By definition of conditional probability,
P(C | D) = P(C and D) / P(D) ==> P(C and D) = 0.3
b. C and D are mutually exclusive if P(C and D) = 0, but this is clearly not the case, so no.
c. C and D are independent if P(C and D) = P(C) P(D). But P(C) P(D) = 0.2 ≠ 0.3, so no.
d. Using the inclusion/exclusion principle, we have
P(C or D) = P(C) + P(D) - P(C and D) ==> P(C or D) = 0.6
e. Using the definition of conditional probability again, we have
P(D | C) = P(C and D) / P(C) ==> P(D | C) = 0.75