To solve this problem we will use the concepts related to Torque as a function of the Force in proportion to the radius to which it is applied. In turn, we will use the concepts of energy expressed as Work, and which is described as the Torque's rate of change in proportion to angular displacement:
Where,
F = Force
r = Radius
Replacing we have that,
The moment of inertia is given by 2.5kg of the weight in hand by the distance squared to the joint of the body of 24 cm, therefore
Finally, angular acceleration is a result of the expression of torque by inertia, therefore
PART B)
The work done is equivalent to the torque applied by the distance traveled by 60 °° in radians , therefore
Well sorry but this is the wrong language.
Answer:
ω = 380π rad/s
Explanation:
The formula for the angular frequency is the oscillation frequency f (hertz) multiplied by 2π
ω = 2πf
then
ω = 2π(190)
ω = 380π rad/s
Answer:
Explanation:
Field lines are lines of forces around a bar magnet. The show the direction of force field in a magnet.
Usually, around a bar magnet, the field lines originates and spreads out from the north pole.
Then they converge and enter through the south pole.
Therefore, we can make our choice by inspecting the given diagram. If the lines enters through the pole, it is the south pole.
Where they originate or leave is the north pole.
<h3>
Answer: 104.5 cubic cm</h3>
=======================================================
Work Shown:
r = radius = 1.045 cm
h = height = 30.48 cm
pi = 3.141 approximately
V = volume of cylinder
V = pi*r^2*h
V = 3.141*(1.045)^2*30.48
V = 104.547940002
V = 104.5 cubic cm