Answer:
The molar concentration of this solution is 0.0463 mol/L
Explanation:
Step 1 : Data given
Mass of a nonelectrolyte solute = 2.69 grams
Volume of water = 345 mL = 0.345 L
Temperature = 26.0°CC = 273 + 26 = 299 K
The osmotic pressure = 863 torr
⇒ 863torr /760 = 1.13553 atm
Step 2: Calculate the molar concentration of this solution
Π = i*M*R*T
⇒with Π = the osmotic pressure = 1.13553 atm
⇒with i = the van't Hoff factor of the nonelectrolyte solute = 1
⇒with M = the molar concentration = TO BE DETERMINED
⇒with R = the gas constant = 0.08206 L*atm/mol*K
⇒with T = the temperature = 299 K
1.13553 atm = 1 * M * 0.08206 L*atm/mol*K * 299 K
M = 1.13553 / (0.08206*299)
M = 0.0463 mol/L
The molar concentration of this solution is 0.0463 mol/L
Answer:
Mass is lost due to the conversion of mass to energy
Explanation:
The question is not complete, the complete question is given as:
⇒
total mass equals 236.053 u total mass equals 235.868 u
Which statement explains the energy term in this reaction? (1) Mass is gained due to the conversion of mass to energy. (2) Mass is gained due to the conversion of energy to mass. (3) Mass is lost due to the conversion of mass to energy. (4) Mass is lost due to the conversion of energy to mass.
Answer: From Einstein’s equation E = mc², when a radioisotope element undergoes fission or fusion in a nuclear reaction, it loses a tiny amount of mass.This mass lost is converted to energy.
The law of conservation of energy holds for this type of reaction (i.e the sum of mass and energy is remains the same in a nuclear reaction). Mass changes to energy, but the total amount of mass and energy combined remains the same before and after a nuclear reaction.
From the reaction above, the total decrease in mass = 236.053 - 235.868 = 0.185 u
Answer:
Correct answer is (D). as a weak acid it can cross the membrane when in its uncharged form.
Explanation:
Aspirin (acetylsalicylic acid, ASA) is an analgesic and anti-inflammatory agent use in the treatment of gentle to moderate pain, inflammation and fever. It is absorb in the stomach and intestine in an unchanged form.
<span>Among the given choices, the third option is the only one which illustrates single replacement.
(3)H2SO4 + Mg --> H2 + MgSO4
A single replacement is also termed as single-displacement reaction, a reaction by which an element in a compound, displaces another element.
It can be illustrated this way:
X + Y-Z → X-Z + Y</span>
Answer:
Second reaction
NO2 + F -------> NO2F
Rate of reaction:
k1 [NO2] [F2]
Explanation:
NO2 + F2 -----> NO2F + F slow step1
NO2 + F -------> NO2F fast. Step 2
Since the first step is the slowest step, it is the rate determining step of the reaction
Hence:
rate = k1 [NO2] [F2]