Answer:
B. 25 m/s/s
Explanation:
Centripetal acceleration is the square of the tangential velocity divided by the radius of curvature.
a = v² / r
Given v = 10 m/s and r = 4 m:
a = (10 m/s)² / 4 m
a = 25 m/s²
Answer:
1.125m/s^2
Explanation:
Since acceleration is defined as the rate of change in velocity with respect to time. Mathematically
v^2= u^2+2as
Where a,v,u and s are the acceleration, final velocity, initial velocity and distance respectively.
a = ?
u = 0m/s
v = 15m/s
s = 100m
Substituting the values into the formula above
v^2= u^2+2as
15^2=0^2+2×a×100
225= 0+200a
225= 200a
Divide both sides by 200
225/200 = 200a/200
a= 1.125m/s^2
Hence the acceleration of the car is 1.125m/s^2.
Note that the car accelerated uniformly from rest, that was why the initial velocity was 0m/s
The approximate amount of thrust(force) you need to apply to the lander to
keep its velocity roughly constant is zero.
<h3>What is Newton's second law of motion?</h3>
Newton's second law of motion states that the acceleration the force acting
on the object is directly proportional to its rate of change of momentum.
F = m a
If the object is moving with uniform velocity, it simply means that the
acceleration is zero, and the corresponding force will also be zero.
Read more about Constant velocity here brainly.com/question/3052539
Answer:
Explanation:
From the question we are told that:
Mass
Angle
Coefficient of static friction
Generally, the equation for Newtons second Law is mathematically given by
For
for
Where
Therefore
Answer:
1.Stronger bones 2.Joint flexibility