Answer:
M
Explanation:
To apply the concept of <u>angular momentum conservation</u>, there should be no external torque before and after
As the <u>asteroid is travelling directly towards the center of the Earth</u>, after impact ,it <u>does not impose any torque on earth's rotation,</u> So angular momentum of earth is conserved
⇒
- is the moment of interia of earth before impact
- is the angular velocity of earth about an axis passing through the center of earth before impact
- is moment of interia of earth and asteroid system
- is the angular velocity of earth and asteroid system about the same axis
let
since
⇒ if time period is to increase by 25%, which is times, the angular velocity decreases 25% which is times
therefore
(moment of inertia of solid sphere)
where M is mass of earth
R is radius of earth
(As given asteroid is very small compared to earth, we assume it be a particle compared to earth, therefore by parallel axis theorem we find its moment of inertia with respect to axis)
where is mass of asteroid
⇒
= +
⇒
The velocity vector of the planet points toward the center of the circle is the following is true about a planet orbiting a star in uniform circular motion.
A. The velocity vector of the planet points toward the center of the circle.
<u>Explanation:</u>
Motion of the planet around the star is mentioned to be uniform and around a circular path. Objects in uniform circular motion motion has constant angular speed but the velocity of the object will not remain constant. Since the planet is in circular motion the direction of velocity vector at a particular point is tangential to the circular path at that particular point.
Thus at every point, the direction of velocity vector changes and this means the velocity is never constant. The objects in uniform circular motion has centripetal acceleration which means that velocity vector of the planet points toward the center of the circle.
Answer: m= 2.16 kg
Explanation: Momentum is expressed in the following formula:
p = mv
Derive to find m:
m = p / v
= 4.75 kg.m/s / 2.2 m/s
= 2.16 kg
Cancel out m/s and the remaining unit is in kg.
Suppose you are doing an experiment where you determine the value of one parameter, say density of a liquid. You have two methods in doing this. By finding the mass and volume, and by using a densitometer. Reproducibility is when you get the same value of density for both methods. Replicability is when you have similar results in one method. So, replicability is a measure of precision, while reproducibility is a measure of accuracy.
Answer:
I can't understand the language....