<span>a thin fibrous cartilage between the surfaces of some joints, e.g., the knee.</span>
Answer:
Fc = 19.2 N
Explanation:
In this case, the force of the Honda over the rock, is a centripetal force. Then, you have:
m: mass of the rock = 600g = 0.6 kg
v: tangential velocity of the Honda = 4m/s
r: radius of the Honda = 50cm = 0.5m
You replace the values of m, r and v in the equation for Fc:
hence, the force has a magnitude of 19.2 N
If the rock would have more mass the centripetal force would be higher
Explanation:
<em><u>Principle of Floatation</u></em>
Principle of Floatation states that weight of floating body is equal to weight of water displaced by it
Answer:
K_a = 8,111 J
Explanation:
This is a collision exercise, let's define the system as formed by the two particles A and B, in this way the forces during the collision are internal and the moment is conserved
initial instant. Just before dropping the particles
p₀ = 0
final moment
p_f = m_a v_a + m_b v_b
p₀ = p_f
0 = m_a v_a + m_b v_b
tells us that
m_a = 8 m_b
0 = 8 m_b v_a + m_b v_b
v_b = - 8 v_a (1)
indicate that the transfer is complete, therefore the kinematic energy is conserved
starting point
Em₀ = K₀ = 73 J
final point. After separating the body
Em_f = K_f = ½ m_a v_a² + ½ m_b v_b²
K₀ = K_f
73 = ½ m_a (v_a² + v_b² / 8)
we substitute equation 1
73 = ½ m_a (v_a² + 8² v_a² / 8)
73 = ½ m_a (9 v_a²)
73/9 = ½ m_a (v_a²) = K_a
K_a = 8,111 J
Answer:
the standard way the body is positioned when using anatomical terminology ... invisible line that runs vertically through the center of the axial region.
Explanation: