Answer:
The coordinates of the circumcenter of this triangle are (3,2)
Step-by-step explanation:
we know that
The circumcenter is the point where the perpendicular bisectors of a triangle intersect
we have the coordinates
step 1
Find the midpoint AB
The formula to calculate the midpoint between two points is equal to
substitute the values
step 2
Find the equation of the line perpendicular to the segment AB that passes through the point (-2,2)
Is a horizontal line (parallel to the x-axis)
-----> equation A
step 3
Find the midpoint BC
The formula to calculate the midpoint between two points is equal to
substitute the values
step 4
Find the equation of the line perpendicular to the segment BC that passes through the point (3,-1)
Is a vertical line (parallel to the y-axis)
-----> equation B
step 5
Find the circumcenter
The circumcenter is the intersection point between the equation A and equation B
-----> equation A
-----> equation B
The intersection point is (3,2)
therefore
The coordinates of the circumcenter of this triangle are (3,2)