Answer:
Answer: a) 20g of H2O (18.02 g/mol) molecules=6.68x10^23
Explanation:
In order to find the amount of molecules of each of the options, we need to follow the following equation.
So, let´s get the number of molecules for each of the options.
the smalest number is in option a)
Best of luck.
I think it's reactivity. but i'm not sure.
Answer : The final equilibrium temperature of the water and iron is, 537.12 K
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.
where,
= specific heat of iron = 560 J/(kg.K)
= specific heat of water = 4186 J/(kg.K)
= mass of iron = 825 g
= mass of water = 40 g
= final temperature of water and iron = ?
= initial temperature of iron =
= initial temperature of water =
Now put all the given values in the above formula, we get:
Therefore, the final equilibrium temperature of the water and iron is, 537.12 K
The water in Glass A is cooler than the water in Glass B; therefore, the particles in Glass A move slower.
Option D
<h3>Chemical Reactions</h3>
Generally,the experiment shows that glass B temperature is higher than glass temperature A and this is given that observation that the solute dissolves faster in glass B than glass A.
Therefore,The water in Glass A is cooler than the water in Glass B; therefore, the particles in Glass A move slower.
For more information on Temperature
brainly.com/question/13439286
Answer:
0.0125mol
Explanation:
Molarity (M) = number of moles (n) ÷ volume (V)
n = Molarity × Volume
According to this question, a 0.05M solution contains 250 mL of NaOH. The volume in litres is as follows:
1000mL = 1L
250mL = 250/1000
= 0.250L
n = 0.05 × 0.250
n = 0.0125
The number of moles of NaOH is 0.0125mol.