<h3><u>Answer;</u></h3>
1 × 10^-8 M
<h3><u>Explanation</u>;</h3>
pH is given by the -log[H+] while
pOH is given by the -log[OH-]
But;
pH + pOH = 14
Thus; if pH is 6, then pOH = 8
pOH = 8
-log[OH-] = 8
[OH-] = 10^-8 M
The concentration of OH- ions at a pH of 6 is 1 × 10^-8 M
The viscous force on an object moving through air is proportional to its velocity.
The only forces acting on an object when falling are air resistance and its weight itself. The weight acts vertically downwards whereas air resistance acts vertically upward.
Let F be the viscous force due to air molecules, B be buoyant force due to air and W be the weight of falling object. Initially, the velocity of falling object and hence the viscous force F is zero and the object is accelerated due to force
(W-B). Because of the acceleration the velocity increases and accordingly the viscous force also increases. At a certain instant, the viscous force becomes equal to W-B. The net force then becomes zero and the object falls with constant velocity. This constant velocity is called terminal velocity.
Thus at terminal velocity, air resistance and force of gravity becomes equal.
When you're out of breath, you feel dizzy, lung pain and maybe even nausea or side pain.
Answer:
141.78 ft
Explanation:
When speed, u = 44mi/h, minimum stopping distance, s = 44 ft = 0.00833 mi.
Calculating the acceleration using one of Newton's equations of motion:
Note: The negative sign denotes deceleration.
When speed, v = 79mi/h, the acceleration is equal to when it is 44mi/h i.e. -116206.48 mi/h^2
Hence, we can find the minimum stopping distance using:
The minimum stopping distance is 141.78 ft.