Bernoulli principle
According to Bernoulli's principle, this faster moving air on the top has a lower pressure than the non-moving air on the bottom. With a greater pressure on the bottom of the paper there is also a greater force pushing up.
1000 khz am radio station broadcasts with a power of 20 kw number of photon emitted per second is 30.16 x 10^30 photon/s.
The frequency of the radio station is:
f
=
1000
k
H
z
=
1
×
10^6Hz
The transmit power is: P = 20kW = 20 X 10^3 W
The transmit power is: h = 6.63 x 10 ^-34 m^2.kg/s
The number of photon emitted per second = N = P/hf = <u>30.16 x 10^30 </u>photon/s.
1000 khz am radio station broadcasts with a photon of 20 kw1000 khz am radio station broadcasts with a power of 20 kw1000 khz am radio station broadcasts with a power of 20 kw1000 khz am radio station broadcasts with a power of 20 kw1000 khz am radio station broadcasts with a power of 20 kw.1000 khz am radio station broadcasts with a power of 20 kw1000 khz am radio station broadcasts with a power of 20 kw1000 khz am radio station broadcasts with a power of 20 kw.
Learn more about photon on:
brainly.com/question/20912241
#SPJ4
Answer:
the critical flaw is subject to detection since this value of ac (16.8 mm) is greater than the 3.0 mm resolution limit.
Explanation:
This problem asks that we determine whether or not a critical flaw in a wide plate is subject to detection given the limit of the flaw detection apparatus (3.0 mm), the value of KIc (98.9 MPa m), the design stress (sy/2 in which s y = 860 MPa), and Y = 1.0.
Therefore, the critical flaw is subject to detection since this value of ac (16.8 mm) is greater than the 3.0 mm resolution limit.
Answer:
Explanation:
ASSUMING the 52° is the angle of incidence measured from the perpendicular to the surface
n₁sinθ₁ = n₂sinθ₂
1 sin52 = 1.33sinθ₂
θ₂ = arcsin(sin52 / 1.33)
θ₂ = 36°
as measured from the perpendicular to the surface
Answer:
(a): The car's relative position to the base of the cliff is x= 32.52m.
(b): The lenght of the car in the ir is tfall= 1.78 sec.
Explanation:
Vo= 0
V= ?
d= 50m
h= 30m
a= 4 m/s²
t= √(2*d/a)
t= 5 sec
V= a*t
V= 20 m/s
Vx= V * cos(24º)
Vx= 18.27 m/s
Vy= V* sin(24º)
Vy= 8.13 m/s
h= Vy*t + g*t²/2
clearing t:
tfall= 1.78 sec (b)
x= Vx * tfall
x= 32.52 m (a)