Answer:
A) d_o = 20.7 cm
B) h_i = 1.014 m
Explanation:
A) To solve this, we will use the lens equation formula;
1/f = 1/d_o + 1/d_i
Where;
f is focal Length = 20 cm = 0.2
d_o is object distance
d_i is image distance = 6m
1/0.2 = 1/d_o + 1/6
1/d_o = 1/0.2 - 1/6
1/d_o = 4.8333
d_o = 1/4.8333
d_o = 0.207 m
d_o = 20.7 cm
B) to solve this, we will use the magnification equation;
M = h_i/h_o = d_i/d_o
Where;
h_o = 3.5 cm = 0.035 m
d_i = 6 m
d_o = 20.7 cm = 0.207 m
Thus;
h_i = (6/0.207) × 0.035
h_i = 1.014 m
Answer:
you can predict where the juggling ball is going to land and the move you hand to catch it
Explanation:
Linear momentum is in a straight line and depends on the objects mass and velocity.
Angular (rotational) momentum depends on the objects mass, velocity, and radius.
Answer:
2.295 eV
Explanation:
maximum wavelength, λ = 542 nm = 542 x 10^-9 m
The work function of the metal is defined as the minimum amount of energy falling on the metal so that the photo electrons just ejects the surface of metal.
where, h is the Plank's constant and c be the speed of light
h = 6.634 x 10^-34 Js
c = 3 x 10^8 m/s
Wo = 2.295 eV
Thus, the work function of this metal is 2.295 eV.