Answer:
10 GHz
Explanation:
Applying,
v = λf.................... Equation 1
Where v = speed of microwave, λ = wavelength, f = frequency.
make f the subject of the equation
f = v/λ................ Equation 2
Note: Microwave is an electromagnetic wave, and all electromagnetic wave have the same speed, which is 3×10⁸ m/s
From the question,
Given: λ = 3 cm = 0.03 m
Constant; v = 3×10⁸ m/s
Substitute these values into equation 2
f = 3×10⁸/(0.03)
f = 10¹⁰ Hz
f = (10¹⁰/10⁹) GHz
f = 10 GHz
Answer:
a) 11 m/s
b) 0.0564 s
Explanation:
Given:
m = 2100 kg
vi = 22 ..... m/s before collision
vf = 0 ......after collision to stop
Δs = 0.62 distance traveled after collision .. crumpling of truck
Part a
Part b
Answer:
h = 3.5 m
Explanation:
First, we will calculate the final speed of the ball when it collides with a seesaw. Using the third equation of motion:
where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 3.5 m
vf = final speed = ?
vi = initial speed = 0 m/s
Therefore,
Now, we will apply the law of conservation of momentum:
where,
m₁ = mass of colliding ball = 3.6 kg
m₂ = mass of ball on the other end = 3.6 kg
v₁ = vf = final velocity of ball while collision = 8.3 m/s
v₂ = vi = initial velocity of other end ball = ?
Therefore,
Now, we again use the third equation of motion for the upward motion of the ball:
where,
g = acceleration due to gravity = -9.81 m/s² (negative for upward motion)
h = height = ?
vf = final speed = 0 m/s
vi = initial speed = 8.3 m/s
Therefore,
<u>h = 3.5 m</u>
Answer:
Explanation:
The concept of elastic and inelastic demand is applied.
for an elastic demand, the elasticity must be greater than 1 and for an Inelastic demand, the elasticity must be less than 1.
The steps and appropriate calculation is as shown in the attached file.
Answer:
10.23m/s^2
Explanation:
GIven data
mass of elevator = 2125 kg
Force= 21,750 N
Required
The maximum acceleration upward
F= ma
a= F/m
a=21,750/2125
a= 10.23m/s^2
Hence the acceleration is 10.23m/s^2