The molecular formula of the compound is C12H15O3 hence the molar mass of the compound is 207 g/mol.
We need to obtain the number of moles of carbon, hydrogen and oxygen in the compound;
Carbon = 24.91 g/44g/mol × 1 mole of carbon = 0.566 moles
Mass of carbon = 0.566 moles × 12 g/mol = 6.792 g
Number of moles of hydrogen = 6.522 g/18 g/mol × 2 moles = 0.725 moles
Mass of hydrogen = 0.725 moles × 1 g/mol = 0.725 g
Mass of oxygen = 10 - (6.792 g + 0.725 g) = 2.483 g
Number of moles of oxygen = 2.483 g/16 g/mol = 0.155 moles
Now we must divide through by the lowest number of moles;
C - 0.566/0.155 H - 0.725/0.155 O - 0.155/0.155
C - 4 H - 5 O - 1
The simplest formula is C4H5O Recall that the molar mass of the compound lies between 150.0 and 220.0 g/mol
4(12) + 5(1) + 16 = 69
Hence; n = 3 and the molecular formula of the compound is C12H15O3
The molar mass of the compound is; 12(12) + 15(1) + 3(16) = 207 g/mol
Learn more: brainly.com/question/15180604
Answer:
4 moles of aluminum and 6 moles of oxygen are produced
The population tha increases the amount of soil nutrients available to plants is D) bees that help spread pollen from one plant to another.
B. White Dwarf.
<h3>Explanation</h3>
The star would eventually run out of hydrogen fuel in the core. The core would shrink and heats up. As the temperature in the core increases, some of the helium in the core will undergo the triple-alpha process to produce elements such as Be, C, and O. The triple-alpha process will heat the outer layers of the star and blow them away from the core. This process will take a long time. Meanwhile, a planetary nebula will form.
As the outer layers of gas leave the core and cool down, they become no longer visible. The only thing left is the core of the star. Consider the Chandrasekhar Limit:
Chandrasekhar Limit: .
A star with core mass smaller than the Chandrasekhar Limit will not overcome electron degeneracy and end up as a white dwarf. Most of the outer layer of the star in question here will be blown away already. The core mass of this star will be only a fraction of its , which is much smaller than the Chandrasekhar Limit.
As the star completes the triple alpha process, its core continues to get smaller. Eventually, atoms will get so close that electrons from two nearby atoms will almost run into each other. By Pauli Exclusion Principle, that's not going to happen. Electron degeneracy will exert a strong outward force on the core. It would balance the inward gravitational pull and prevent the star from collapsing any further. The star will not go any smaller. Still, it will gain in temperature and glow on the blue end of the spectrum. It will end up as a white dwarf.
Answer:
Fault-block mountain
Explanation:
I got it right on the assignment