Actually, the area of a triangle is a = bh/2. If a = 30 and b = 12:
So he height is 5 units
MP = P - M = (0, 5) - (5, 6) = (0-5, 5-6) = (-5, -1) |MP| = √((-5)^2 + (-1)^2) = √(25+1) = √26
C(x) should be ;
C(x)=0.9x² - 306x +36,001
Answer:
$9991
Step-by-step explanation:
Given :
C(x)=0.9x^2 - 306x +36,001
To obtain minimum cost :
Cost is minimum when, C'(x) = 0
C'(x) = 2(0.9x) - 306 = 0
C'(x) = 1.8x - 306 = 0
1.8x - 306 = 0
1.8x = 306
x = 306 / 1.8
x = 170
Hence, put x = 170 in C(x)=0.9x²- 306x +36,001 to obtain the
C(170) = 0.9(170^2) - 306(170) + 36001
C(170) = 26010 - 52020 + 36001
= 9991
Minimum unit cost = 9991
Answer:
1. f(x) = 3x + 7
2.
3. f(x) = x + 5
4. f(x) = -2x - 5
5.
Step-by-step explanation:
Rearrange all the equations to make y the subject,
then substitute f(x) for y:
1. y - 3x = 7
Add 3x to both sides:
⇒ y = 3x + 7
⇒ f(x) = 3x + 7
2. 2x + 4y = 8
Subtract 2x from both sides:
⇒ 4y = -2x + 8
Divide both sides by 4:
⇒
⇒
3. -x + y = 5
Add x to both sides:
⇒ y = x + 5
⇒ f(x) = x + 5
4. y + 5 = -2x
Subtract 5 from both sides:
⇒ y = -2x - 5
⇒ f(x) = -2x - 5
5. 3x + 2y - 4 = 0
Subtract 3x from both sides:
⇒ 2y - 4 = -3x
Add 4 to both sides:
⇒ 2y = -3x + 4
Divide both sides by 2;
⇒
⇒