This means for every 5 students there will be 1 teacher so 550/5=110
So answer is 110 teachers
Answer:
hlo XD
no its not looking difficult
it is difficult
Answer:
Around 0.73% of adults in the USA have stage 2 high blood pressure
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean and standard deviation , the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 121 and standard deviation of 16.
This means that
Around what percentage of adults in the USA have stage 2 high blood pressure
The proportion is 1 subtracted by the p-value of Z when X = 160. So
has a p-value of 0.9927.
1 - 0.9927 = 0.0073
0.0073*100% = 0.73%
Around 0.73% of adults in the USA have stage 2 high blood pressure
(m^3)^-1 (x^2)^5 = (m^-3) (x^10) = x^10 / m^3
The given equation
x/2 = y/3 = z/4
can be broken into three separate equations which I'll call equations (A), (B) and (C)
- x/2 = y/3 ..... equation (A)
- y/3 = z/4 .... equation (B)
- x/2 = z/4 .... equation (C)
We'll start off solving for z in equation (C)
x/2 = z/4
4x = 2z ... cross multiply
2z = 4x
z = 4x/2 ... divide both sides by 2
z = 2x
Now let's solve for y in equation (A)
x/2 = y/3
3x = 2y
2y = 3x
y = 3x/2
y = (3/2)x
y = 1.5x
The results of z = 2x and y = 1.5x both have the right hand sides in terms of x. This will allow us to replace the variables y and z with something in terms of x, which means we'll have some overall expression with x only. The idea is that expression should simplify to 3 if we played our cards right.
We won't be using equation (B) at all.
---------------------
The key takeaway from the last section is that
Let's plug those items into the expression (2x-y+5z)/(3y-x) to get the following:
(2x-y+5z)/(3y-x)
(2x-y+5(2x))/(3y-x) ..... plug in z = 2x
(2x-y+10x)/(3y-x)
(12x-y)/(3y-x)
(12x-1.5x)/(3(1.5x)-x) .... plug in y = 1.5x
(12x-1.5x)/(4.5x-x)
(10.5x)/(3.5x)
(10.5)/(3.5)
3
We've shown that plugging z = 2x and y = 1.5x into the expression above simplifies to 3. Therefore, the equation (2x-y+5z)/(3y-x) = 3 is true when x/2 = y/3 = z/4. This concludes the proof.