Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
Answer:
The number of valence electrons increases to 8 or, the atom gives up loosely held valence electrons.
Explanation:
Please mark brainliest and have a great day!
Answer:
Explanation:
<u>Diagonal Launch
</u>
It's referred to as a situation where an object is thrown in free air forming an angle with the horizontal. The object then describes a known path called a parabola, where there are x and y components of the speed, displacement, and acceleration.
The object will eventually reach its maximum height (apex) and then it will return to the height from which it was launched. The equation for the height at any time t is
Where vo is the magnitude of the initial velocity, is the angle, t is the time and g is the acceleration of gravity
The maximum height the object can reach can be computed as
There are two times where the value of y is when t=0 (at launching time) and when it goes back to the same level. We need to find that time t by making
Removing and dividing by t (t different of zero)
Then we find the total flight as
We can easily note the total time (hang time) is twice the maximum (apex) time, so the required time is
The tendency of an object to resist a change in motion is called inertia.
Answer:
As the warmer air over the equator rises, colder air from the poles rushes toward the equator to take its place. Global winds push air masses around Earth and bring changes in the weather. In the United States, global winds called the prevailing westerlies push air masses from west to east.
Explanation: