Answer:
Explanation:
Let v be the velocity acquired by electron in electric field
V q = 1/2 m v²
V is potential difference applied on charge q , m is mass of charge , v is velocity acquired
2400 x 1.6 x 10⁻¹⁹ = .5 x 9.1 x 10⁻³¹ x v²
v² = 844 x 10¹²
v = 29.05 x 10⁶ m /s
Maximum force will be exerted on moving electron when it moves perpendicular to magnetic field .
Maximum force = Bqv , where B is magnetic field , q is charge on electron and v is velocity of electron
= 1.7 x 1.6 x 10⁻¹⁹ x 29.05 x 10⁶
= 79.02 x 10⁻¹³ N .
Minimum force will be zero when electron moves along the direction of magnetic field .
The time described above is known as the waves Period.
The time which it takes for a particle to complete one full cycle is known as the period. Period is normally measured in seconds. Frequency on the other hand is the number of cycles which are completed in a given period of time e.g a second. periodic time T is given by reciprocal of frequency (1/f).
Answer:
T = 0.003 s
(Period is written as T)
Explanation:
Period = time it takes for one wave to pass (measured in seconds)
frequency = number of cycles that occur in 1 second
(measured in Hz / hertz / 1 second)
Period : T
frequency : f
So, if we know that the frequency of a wave is 300 Hz, we can find the period of the wave from the relation between frequency and period
T = f =
to find the period (T) of this wave, we need to plug in the frequency (f) of 300
T =
T = 0.00333333333
So, the period of a wave that has a frequency of 300 Hz is 0.003 s
[the period/T of this wave is 0.003 s]
The speed of light generally would be 300000km/s but since the train is moving in the same direction as the light it would apparently appear to be 100000km/s
Answer:
Invisible UV energy reacts with emulsion sensitizer and hardens the stencil so it won't dissolve with water and rinse down the drain
Explanation: