This question is incomplete, the complete question;
The L-ft ladder has a uniform weight of W lb and rests against the smooth wall at B. θ = 60. If the coefficient of static friction at A is μ = 0.4.
Determine the magnitude of force at point A and determine if the ladder will slip. given the following; L = 10 FT, W = 76 lb
Answer:
- the magnitude of force at point A is 79.1033 lb
- since FA < FA_max; Ladder WILL NOT slip
Explanation:
Given that;
∑'MA = 0
⇒ NB [Lsin∅] - W[L/2.cos∅] = 0
NB = W / 2tan∅ -------let this be equation 1
∑Fx = 0
⇒ FA - NB = 0
FA = NB
therefore from equation 1
FA = NB = W / 2tan∅
we substitute in our values
FA = NB = 76 / 2tan(60°) = 21.9393 lb
Now ∑Fy = 0
NA - W = 0
NA = W = 76 lb
Net force at A will be
FA' = √( NA² + FA²)
= √( (W)² + (W / 2tan∅)²)
we substitute in our values
FA' = √( (76)² + (21.9393)²)
= √( 5776 + 481.3328)
= √ 6257.3328
FA' = 79.1033 lb
Therefore the magnitude of force at point A is 79.1033 lb
Now maximum possible frictional force at A
FA_max = μ × NA
so, FA_max = 0.4 × 76
FA_max = 30.4 lb
So by comparing, we can easily see that the actual friction force required for keeping the the ladder stationary i.e (FA) is less than the maximum possible friction available at point A.
Therefore since FA < FA_max; Ladder WILL NOT slip