The silicon wafer contains 20.96 g of silicon.
The mole of a substance is related to its mass and molar mass by the following equation:
<h3>Mole = mass / molar mass ....... (1)</h3>
Making mass the subject of the above equation, we have
<h3>Mass = mole × molar mass ..... (2)</h3>
With the above formula (i.e equation 2), we can obtain the mass of silicon in the wafer as follow:
Mole silicon = 0.746 mole
Molar mass of silicon = 28.09 g/mol
<h3>Mass of silicon =? </h3>
Mass = mole × molar mass
Mass = 0.746 × 28.09
<h3>Mass of silicon = 20.96 g</h3>
Therefore, the mass of silicon in the wafer is 20.96 g
Learn more: brainly.com/question/24639749
There are two terms
a) accuracy : it relates to the exactness of an answer that how an answer is close to the actual answer or actual reading
So 104.6 is accurate
b) Precision : This is related to the closeness of different readings with each other
The first reading is 103.7 and the second one is 108.4 so the second reading is quite different from the first reading so it cannot be called as precised
Again 105.8 has good difference from the second reading hence again this is not precised
However the last reading 104.6 is quite near to 105.8 so 104.6 can be called as precise
Answer:
Reflection involves a change in direction of waves when they bounce off a barrier; refraction of waves involves a change in the direction of waves as they pass from one medium to another; and diffraction involves a change in direction of waves as they pass through an opening or around a barrier in their path.
Explanation:
https://www.physicsclassroom.com/class/waves/Lesson-3/Reflection,-Refraction,-and-Diffraction#:~:text=Diffraction%20of%20Waves-,Reflection%20involves%20a%20change%20in%20direction%20of%20waves%20when%20they,a%20barrier%20in%20their%20path.