Answer:
The momentum of the box at t = 2 s is given as
p₂ = (-2.47î + 2.82ĵ) kgm/s
Explanation:
F = [(0.265 N/s)t] î + [(-0.460 N/s²)t²] ĵ
F = (0.265t) î - (0.460t²) ĵ
At t = 0
Initial momentum
p₀ = (-3.00 kg⋅m/s )î + (4.05 kg⋅m/s) ĵ
Find the momentum at t = 2 s
According to Newton's second law of motion, the change in momentum is equal to the impulse.
That is,
dp = F.dt
Δp = ∫²₀ F.dt
∫²₀ F.dt = ∫²₀ [(0.265t) î - (0.460t²) ĵ] dt
= [(0.1325t²) î - (0.1533t³) ĵ]²₀
= [0.1325(2²)] î - [0.1533(2³)] ĵ
∫²₀ F.dt= (0.53 î - 1.2267 ĵ) kgm/s
p₂ - p₀ = Δp = ∫²₀ F.dt = (0.53 î - 1.2267 ĵ)
p₂ = p₀ + Δp
p₂ = (-3.00î + 4.05ĵ) + (0.53 î - 1.2267 ĵ)
p₂ = (-2.47î + 2.8233ĵ) kgm/s
p₂ = (-2.47î + 2.82ĵ) kgm/s
Hope this Helps!!!