Answer:
Gas state
Explanation:
Gas particles spread out to fill a container evenly, unlike solids and liquids.
<span>The rate of infusion is 2.1L/19h or 2100mL/19h (as 1L = 100 mL).
To convert 19 hours to minutes we multiply as follows:
19 hours = (19 hours) x (60 minutes/1 hour) = 1140 minutes
So the rate of infusion becomes:
2100mL /1140 min
In order to converted mL to drops (gtt) we multiply the rate of infusion with the drop factor to get the drip rate:
(2100mL/1140min) x (20 gtt/mL) = 36.8 gtt/min</span>
<span>when two or more molecules interact and the molecules change.</span>
The big bang did not produce a significant proportion of elements heavier than helium because the temperatures and densities present in the early universe were not sufficient to support the fusion of heavier elements.
During the first few minute of the big bang, the universe was composed of mostly hydrogen and helium, with very small amounts of lithium and beryllium. As the universe expanded and cooled, the denser regions of the universe collapsed to form the first stars. Inside these stars, the intense pressure and heat generated by nuclear fusion reactions allowed for the production of heavier elements, such as carbon and oxygen. However, elements heavier than helium, such as iron and nickel, require even higher temperatures and densities to be produced, which can only be found in the cores of supernovae. Therefore, the big bang alone did not produce a significant proportion of elements heavier than helium.
to know more about compounds-
brainly.com/question/12166462
#SPJ4