X = burger number. 3x-6 = fries sold
3x-6 = 120 solve for x
Answer:
3rd graph down
Step-by-step explanation:
greens are x and carrots are y in my equations
2x - y >= 3
x + 2y < 4
The first equation is solid and will highlight everything to the right of it because it is a >
the second is dashed and will highlight everything to the left of it because it is a <
the only 2 graphs that show this are 1 and 3
looking at the points you can see that the points for the solid line are both the same so ignore those and go to the dashed lined ones.
on the first graph the points are (0,4)
plugging those into our equation gives us 0 + 2*4 <4
or 8<4 which doesnt make sense making 3 the correct graph
(sorry my answer wasnt posting so i had to start over and make it less detailed, but comment if you need any explanation)
47. my answer needs to be at least 20 characters long there u go
<span>Given: Rectangle ABCD
Prove: ∆ABD≅∆CBD
Solution:
<span> Statement Reason
</span>
ABCD is a parallelogram Rectangles are parallelograms since the definition of a parallelogram is a quadrilateral with two pairs of parallel sides.
Segment AD = Segment BC The opposite sides of a parallelogram are Segment AB = Segment CD congruent. This is a theorem about the parallelograms.
</span>∆ABD≅∆CBD SSS postulate: three sides of ΔABD is equal to the three sides of ∆CBD<span>
</span><span>Given: Rectangle ABCD
Prove: ∆ABC≅∆ADC
</span>Solution:
<span> Statement Reason
</span>
Angle A and Angle C Definition of a rectangle: A quadrilateral
are right angles with four right angles.
Angle A = Angle C Since both are right angles, they are congruent
Segment AB = Segment DC The opposite sides of a parallelogram are Segment AD = Segment BC congruent. This is a theorem about the parallelograms.
∆ABC≅∆ADC SAS postulate: two sides and included angle of ΔABC is congruent to the two sides and included angle of ∆CBD