Answer:
Its kinetic energy.
Explanation:
In a liquid, the molecules are so close together that there is very little empty space. A liquid also has a definite volume, because molecules in a liquid do not break away from the attractive forces. The molecules can, however, move past one another freely, and so a liquid can flow, can be poured, and assumes the shape of its container.
An increase in the temperature of a liquid causes an increase in the average speed of its molecules. As the temperature of a liquid increases, the molecules move faster thereby increasing the liquid's kinetic energy.
Answer: Option (c) is the correct answer.
Explanation:
Activation energy or free energy of a transition state is defined as the minimum amount of energy required to by reactant molecules to undergo a chemical reaction.
So, when activation energy is decreased then molecules with lesser amount of energy can also participate in the reaction. This leads to an increase in rate of reaction.
Also, increase in temperature will help in increasing the rate of reaction.
Whereas at a given temperature, every molecule will have different energy because every molecule travels at different speed.
Hence, we can conclude that out of the given options false statement is that at a given temperature and time all molecules in a solution or a sample will have the same energy.
Answer:
Wavelength (λ) – The distance of one complete cycle in the wave. The distance between two consecutive crests and /or troughs. S.I. Unit: metre (m).
In other words:
Wavelength is the distance from crest to crest (or trough to trough).
Answer: 3.01 x 10^24 atoms
Explanation:
Based on Avogadro's law:
1 mole of any substance has 6.02 x 10^23 atoms
So, 1 mole of SI = 6.02 x 10^23 atoms
5.0 moles = Z atoms
To get the value of Z, cross multiply:
(Z atoms x 1 mole) = (6.02 x 10^23 atoms x 5.0 moles)
Z atoms•1 mole = 30.1 x 10^23 atoms•moles
Divide both sides by 1 mole
Z atoms•1 mole / 1 mole = 30.1 x 10^23 atoms•moles / 1 mole
Z = 30.1 x 10^23 atoms
[Place Z in standard form
So, Z = 3.01 x 10^24 atoms]
Thus, there are 3.01 x 10^24 atoms in 5.0 moles in SI