Answer:
To prove that 3·4ⁿ + 51 is divisible by 3 and 9, we have;
3·4ⁿ is divisible by 3 and 51 is divisible by 3
Where we have;
= 3·4ⁿ + 51
= 3·4ⁿ⁺¹ + 51
- = 3·4ⁿ⁺¹ + 51 - (3·4ⁿ + 51) = 3·4ⁿ⁺¹ - 3·4ⁿ
- = 3( 4ⁿ⁺¹ - 4ⁿ) = 3×4ⁿ×(4 - 1) = 9×4ⁿ
∴ - is divisible by 9
Given that we have for S₀ = 3×4⁰ + 51 = 63 = 9×7
∴ S₀ is divisible by 9
Since - is divisible by 9, we have;
- = - is divisible by 9
Therefore is divisible by 9 and is divisible by 9 for all positive integers n
Step-by-step explanation:
Answer:
b/a
Step-by-step explanation:
Given,(b^-2)/a*(b^-3)
or,(b^-2+3)/a
or,b/a
Answer:
108
Step-by-step explanation:
The total of stitches in width is 108, if 9 inches is the total inches in width. The remaining stitches of the remaining width (if this is the case) would be 84 stitches. If we are combining 9 and 2, the total amount of stitches would be 132. If you would like the work, you can ask otherwise hope this helped!
Answer:
(A) Yes, since the test statistic is in the rejection region defined by the critical value, reject the null. The claim is the alternative, so the claim is supported.
Step-by-step explanation:
Null hypothesis: The wait time before a call is answered by a service representative is 3.3 minutes.
Alternate hypothesis: The wait time before a call is answered by a service representative is less than 3.3 minutes.
Test statistic (t) = (sample mean - population mean) ÷ sd/√n
sample mean = 3.24 minutes
population mean = 3.3 minutes
sd = 0.4 minutes
n = 62
degree of freedom = n - 1 = 62 - 1 = 71
significance level = 0.08
t = (3.24 - 3.3) ÷ 0.4/√62 = -0.06 ÷ 005 = -1.2
The test is a one-tailed test. The critical value corresponding to 61 degrees of freedom and 0.08 significance level is 1.654
Conclusion:
Reject the null hypothesis because the test statistic -1.2 is in the rejection region of the critical value 1.654. The claim is contained in the alternative hypothesis, so it is supported.