According to the balanced equation of the reaction:
2C2H2 + 5O2 → 4CO2 + 2H2O
So we can mention all as liters,
A) as we see that 2 liters of C2H2 react with 5 liters of oxygen to produce 4 liters of CO4 and 2 liters of H2O
So, when we have 75L of CO2
and when we have 2 L of C2H2 reacts and gives 4 L of CO2
2C2H2 → 4CO2
∴ The volume of C2H2 required is:
= 75L / 2
= 37.5 L
B) and, when we have 75 L of CO2
and 4CO2 → 2H2O
∴ the volume of H2O required is:
= 75 L /2
= 37.5 L
C) and from the balanced equation and by the same way:
when 5 liters O2 reacts to give 4 liters of CO2
and we have 75 L of CO2:
5 O2 → 4 CO2
?? ← 75 L
∴ the volume of O2 required is:
= 75 *(5/4)
= 93.75 L
D) about the using of the number of moles the answer is:
no, there is no need to find the number of moles as we called everything in the balanced equation by liters and use it as a liter unit to get the volume, without the need to get the number of moles.
If it is 60 Celsius that would conver to fare height by means of this equation; (1.8*60)+32°F
Which would come out to.... 140° Fahrenheit... Hardly seems like chilly conditions.
The amount
per 100 g is:
38.7 %
calcium = 38.7g Ca / 100g compound = 38.7g
19.9 %
phosphorus = 19.9g P / 100g compound = 19.9g
41.2 %
oxygen = 41.2g O / 100g compound = 41.2g
The molar amounts of calcium,
phosphorus and oxygen in 100g sample are calculated by dividing each element’s
mass by its molar mass:
Ca = 38.7/40.078
= 0.96
P = 19.9/30.97
= 0.64
O = 41.2/15.99
= 2.57
C0efficients
for the tentative empirical formula are derived by dividing each molar amount
by the lesser value that is 0.64 and in this case, after that multiply wih 2.
Ca = 0.96 /
0.64 = 1.5=1.5 x 2 = 3
P = 0.64 /
0.64 = 1 = 1x2= 2
O = 2.57 /
0.64 = 4= 4x2= 8
Since, the
resulting ratio is calcium 3, phosphorus 2 and oxygen 8
<span>So, the
empirical formula of the compound is Ca</span>₃(PO₄)₂
It may be unreliable because it might mess something up from the speed.