68 degrees as well, because the angles are corresponding.
Answer:
a) 658008 samples
b) 274050 samples
c) 515502 samples
Step-by-step explanation:
a) How many ways sample of 5 each can be selected from 40 is just a combination problem since the order of selection isn't important.
So, the number of samples = ⁴⁰C₅ = 658008 samples
b) How many samples of 5 contain exactly one nonconforming chip?
There are 10 nonconforming chips in the batch, and 1 nonconforming chip for the sample of 5 be picked from ten in the following number of ways
¹⁰C₁ = 10 ways
then the remaining 4 conforming chips in a sample of 5 can be picked from the remaining 30 total conforming chips in the following number of ways
³⁰C₄ = 27405 ways
So, total number of samples containing exactly 1 nonconforming chip in a sample of 5 = 10 × 27405 = 274050 samples
c) How many samples of 5 contain at least one nonconforming chip?
The number of samples of 5 that contain at least one nonconforming chip = (Total number of samples) - (Number of samples with no nonconforming chip in them)
Number of samples with no nonconforming chip in them = ³⁰C₅ = 142506 samples
Total number of samples = 658008
The number of samples of 5 that contain at least one nonconforming chip = 658008 - 142506 = 515502 samples
Step-by-step explanation:
3-8 is diagnal 7-2 is also 7-2 is the answer
Hello.
17. ( 3 + 5 ) · 8 = 64
18. 4 · ( 6 - 2 ) + 7 = 23
19. 10 ÷ ( 3 + 2 ) · 4 = 8
20. ( 3 + 6 ) · 2 = 18
---------------------------------