They can have a close similar appearance to the parents, have close relation of child reactions.
for example, everyone born in my father's side of the family had the tendency to bump their head on something as they fall asleep up to the point when you are a toddler.
Answer:
460.52 s
Explanation:
Since the instantaneous rate of change of the voltage is proportional to the voltage in the condenser, we have that
dV/dt ∝ V
dV/dt = kV
separating the variables, we have
dV/V = kdt
integrating both sides, we have
∫dV/V = ∫kdt
㏑(V/V₀) = kt
V/V₀ =
Since the instantaneous rate of change of the voltage is -0.01 of the voltage dV/dt = -0.01V
Since dV/dt = kV
-0.01V = kV
k = -0.01
So, V/V₀ =
V = V₀
Given that the voltage decreases by 90 %, we have that the remaining voltage (100 % - 90%)V₀ = 10%V₀ = 0.1V₀
So, V = 0.1V₀
Thus
V = V₀
0.1V₀ = V₀
0.1V₀/V₀ =
0.1 =
to find the time, t it takes the voltage to decrease by 90%, we taking natural logarithm of both sides, we have
㏑(0.01) = -0.01t
So, t = ㏑(0.01)/-0.01
t = -4.6052/-0.01
t = 460.52 s
Answer:
a) 0.022%
b) 10014.32 lb
Explanation:
a) Percentage uncertainty would be
Percent uncertainty is 0.022%
b) For 1 kg uncertainty mass in kg would be
Mass in pounds would be
Mass in pound-mass is 10014.32 lb
<span>Mercury, Venus, Earth, and Mars are all ___inner___ planets. This is because they are all within the asteroid belt.</span>
Answer:
The second ball lands 1.5 s after the first ball.
Explanation:
Given;
initial velocity of the ball, u = 12 m/s
height of fall, h = 35 m
initial velocity of the second, v = 12 m/s
Time taken for the first ball to land;
determine the maximum height reached by the second ball;
v² = u² -2gh
at maximum height, the final velocity, v = 0
0 = 12² - (2 x 9.8)h
19.6h = 144
h = 144 / 19.6
h = 7.35 m
time to reach this height;
Total height above the ground to be traveled by the second ball is given as;
= 7.35 m + 35m
= 42.35 m
Time taken for the second ball to fall from this height;
total time spent in air by the second ball;
T = t₁ + t₂
T = 1.23 s + 2.94 s
T = 4.17 s
Time taken for the second ball to land after the first ball is given by;
t = 4.17 s - 2.67 s
T = 1.5 s
Therefore, the second ball lands 1.5 s after the first ball.