Answer:
They attract or repel other charged objects without touching them.
Explanation:
My chemistry teacher always says like repels like opposite attracts.
Answer:
0.0308 mol
Explanation:
In order to convert from grams of any given substance to moles, we need to use its molar mass:
- Molar mass of KAI(SO₂)₂ = MM of K + MM of Al + (MM of S + 2*MM of O)*2
- Molar mass of KAI(SO₂)₂ = 194 g/mol
Now we <u>calculate the number of moles of KAI(SO₂)₂ contained in 5.98 g</u>:
- 5.98 g ÷ 194 g/mol = 0.0308 mol
Answer: Option (c) is the correct answer.
Explanation:
When a weak acid reacts with a strong base then it results into the formation of a basic solution. Hence, the resulting solution will always have a pH greater than 7.
Since, at the equivalence point number of hydrogen ions become equal to the hydroxide ions. Therefore, pH of solution will be about 7.
So at the equivalence point, the weak acid will get neutralized due to the addition of strong base. Therefore, it will lead to the formation of conjugate base.
As a result, the solution will become slightly basic in nature.
Thus, we can conclude that at the equivalence point, the acid has all been converted into its conjugate base, resulting in a weakly acidic solution because at the equivalence point, the acid has all been converted into its conjugate base, resulting in a weakly basic solution.
F. <em>None of the above
</em>
<em>No O atoms are present</em> as reacting substances, only O_2 and H_2O molecules.
O_2 + 2H_2O + 2e^(-) → 4OH^(-)
We must use <em>oxidation numbers</em> to decide whether oxygen or water is the substance reduced.
The oxidation number of O changes from 0 in O_2 to -2 in OH^(-).
A decrease in oxidation number is <em>reduction</em>, so O_2 is the substance reduced.
The oxidation number of O is -2 in both H_2O and OH^(-), so water is <em>neither oxidized nor reduced</em>.
Answer:
you can simply answer vl\t1=v2/t2