<span>The maximum oxygen uptake is known as the VO max.</span>
the answer is A. The aluminum has 0.84 ohms more resistance.
Thank you for posting your question here at brainly. A mass of m moves with 2V towards in the opposite direction of a mass, 4m moving at a speed of V, the speed of m was 2/5V and the mass of 4m was 7.5V. I hope it helps.
Answer:
6.7 m/s^2
Explanation:
The formula of acceleration is:
where is acceleration, is velocity and is time. means final velocity. means initial velocity, means final time and means initial time.
We are given that the Firebird travels at velocity of 0 to 60 mph in four seconds. Therefore:
- Our initial velocity starts at 0 mph.
- Our final velocity is at 60 mph.
- Our initial time is 0 second.
- Our final time is 4 seconds.
Since it travels to the east then our vector will be positive. However, acceleration has to be in m/s^2 unit (Sl unit) so we'll have to convert from mph (miles per hours) to m/s (meters per second) first.
We know that:
- A mile equals to 1609.344 meters.
- An hour equals to 60 minutes which a minute equals to 60 seconds. So 60 minutes will equal to 3600 seconds.
Now we divide 1609.344 by 3600 to find a unit rate of m/s:
Now multiply 0.44704 m/s by 0 and 60 to get velocity in m/s unit:
- Initial velocity = 0 m/s
- Final velocity = 60 * 0.44704 = 26.82 m/s
Time is already in second so no need for conversion. Substitute known information in the formula:
Therefore, the Firebird will accelerate at the rate of 6.7 m/s^2.
Distance, Force
<u>Explanation:</u>
1) Increasing the load will add to the friction on the bearings of the pulleys, thus reducing the efficiency of the system. The ideal mechanical advantage won't change since the ideal mechanical advantage ignores friction.
2) Increasing the number of pulleys will increase the ideal mechanical advantage, but because of friction it will decrease the efficiency. The more pulleys that are turning, the more friction there is, and the less efficient the system will be.
3) Work = force x distance, and what machines do is alter the amount of force you can apply while at the same time reducing the distance moved by the same factor. For instance, a jack multiplies the force you apply by a factor of 100, when you push down on the handle of the jack 100 cm, the car will only go up 1 cm. So the force x distance is the same 100 x force x 1/100 x distance.