Explanation:
Igneous - metamorphic - sedimentary
A rock cycle provides the cyclic transformation of one rock type to another in nature.
There are three main types of rock involved in the rock cycle;
- igneous rocks are derived from the cooling and solidification of molten magma
- metamorphic rocks are changed rocks subjected to intense pressure and temperature
- sedimentary rocks are derived from rock sediments that have been lithified.
The history of the rock in Monticello begins with igneous rock formation. Basalt is an igneous rock that forms from the cooling and solidification of molten magma. Under intense pressure and temperature regimes, they are changed to metamorphic rocks.
Agents of denudation such as wind, water and glacier weathers the rock and disintegrates it. They are then carried into basins where they are deposited. Here they form sedimentary rock.
The process still goes on as the sedimentary rock gets taken into depth, they can either melt to form igneous rock or be changed to metamorphic rocks.
learn more:
metamorphic process brainly.com/question/869769
sedimentary rocks brainly.com/question/9131992
#learnwithBrainly
Answer:
The net friction force is 8.01 N
Explanation:
Net friction force = mass of hockey puck × acceleration
From the equations of motion
v^2 = u^2 + 2as
v = 40 m/s
u = 0 m/s (puck was initially at rest)
s = 30 m
40^2 = 0^2 + 2×a×30
60a = 1600
a = 1600/60 = 26.7 m/s^2
The acceleration of the puck is 26.7 m/s^2
Net friction force = 0.3 × 26.7 = 8.01 N
The calculated coefficient of kinetic friction is 0.33125.'
The rate of kinetic friction the friction force to normal force ratio experienced by a body moving on a dry, uneven surface is known as k. The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them. Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.
given mass of the block=10 kg
spring constant k= 2250 Nm
now according to principal of conservation of energy we observe,
the energy possessed by the block initially is reduced by the friction between the points B and C and rest is used up in work done by the spring.
mgh= μ (mgl) +1/2 kx²
10 x 10 x 3= μ(600) +(1125) (0.09)
μ(600) =300 - 101.25
μ = 198.75÷600
μ =0.33125
The complete question is- A 10.0−kg block is released from rest at point A in Fig The track is frictionless except for the portion between point B and C, which has a length of 6.00m the block travels down the track, hits a spring of force constant 2250N/m, and compresses the spring 0.300m form its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between point Band (C)
Learn more about kinetic friction here-
brainly.com/question/13754413
#SPJ4
Answer:
4.2 J
Explanation:
Specific heat capacity: This is defined as the amount of a heat required to rise a unit mass of a substance through a temperature of 1 K
From specific heat capacity,
Q = cmΔt.............................. Equation 1
Where Q = amount of energy absorbed or lost, c = specific heat capacity of water, m = mass of water, Δt = Temperature rise.
Given: m = 1 g = 0.001 kg, Δt = 1 °C
Constant : c = 4200 J/kg.°C
Substitute into equation 1
Q = 0.001×4200(1)
Q = 4.2 J.
Hence the energy absorbed or lost = 4.2 J