Answer a) is incorrect as sound does not travel in a vacuum.
The answer is : We’ll see the bell move, but we won’t hear it ring. This is because light can travel through vacuum but sound cannot. Sound waves are vibrations of particles in any media, so sound requires a medium to travel, and it cannot travel in a vacuum as there is no particles to vibrate.
Answer:
2.49 * 10^(-4) m
Explanation:
Parameters given:
Frequency, f = 4.257 MHz = 4.257 * 10^6 Hz
Speed of sound in the body, v = 1.06 km/ = 1060 m/s
The speed of a wave is given as the product of its wavelength and frequency:
v = λf
Where λ = wavelength
This implies that:
λ = v/f
λ = (1060) / (4.257 * 10^6)
λ = 2.49 * 10^(-4) m
The wavelength of the sound in the body is 2.49 * 10^(-4) m.
Answer: Enceladus
Explanation:
Enceladus is a small, icy body with an undergound ocean beneath its crust. Cassini discovered that geyser-like jets spew water vapor and ice particles. It is also the sixth largest moon in Saturn and just about a tenth of the largest moon in Saturn; Titan. It is often regarded as one of the most reflective body in the solar system as a result of its icy surface.
Turn off lights when leaving rooms.
Unplug unused appliances. Even when powered off these appliances use electricity.
Replace regular light bulbs with energy saving bulbs.