Answer:
w = -531 kJ
1. Work was done by the system.
Explanation:
Step 1: Given data
- Heat gained by the system (q): 687 kJ (By convention, when the system absorbs heat, q > 0).
- Change in the internal energy of the system (ΔU°): 156 kJ
Step 2: Calculate the work done (w)
We will use the following expression.
ΔU° = q + w
w = ΔU° - q
w = 156 kJ - 687 kJ
w = -531 kJ
By convention, when w < 0, work is done by the system on the surroundings.
1 molecule CO2 has 2 atoms O.
1 mole CO2 has 2 moles O,
1.5 mole CO2 has 2*1.5 mole O=3.0 mole O
Answer: 1,013.32 cal × 4.18 J/cal = 4,235.68 J
Explanation:
1) Data:
Water ⇒ C = 1 cal/g°C
m = 65.8 g
Ti = 31.5°C
Tf = 36.9°C
Heat, Q = ?
2) Formula:
Q = mCΔT
3) Calculations:
Q = 65.8g × 1 cal/g°C × (46.9°C - 31.5°C) = 1,013.2 cal
4) You can convert from calories to Joules using the conversion factor:
1 cal = 4.18 J
⇒ 1,013.32 cal × 4.18 J/cal = 4,235.68 J
Answer:
1.586x10^-9
Explanation:
To make a multiplication in scientific notation we need to multiply the coefficients and sum the exponents:
Coefficients: 2.600 * 6.1000 = 15.86
Exponents: -5 + (-5) = -10
The result is:
15.86x10^-10
As the scientific notation must be given with only 1 number in the left of the point:
<h3>1.586x10^-9</h3>
Answer: Option (b) and (d) are the correct answer.
Explanation:
Kinetic products are defined as the products which contain a terminal double bond and the reaction is irreversible in nature.
Kinetic controlled products are formed faster because these tend to lower the activation energy. Due to this molecules with less energy are also able to participate in the reaction.
Therefore, rate of reaction increases leading to rapid formation of products.
Therefore, we can conclude that the products of a reaction under kinetic control are product that is formed at the fastest rate and product whose formation requires the smallest free energy of activation.