Answer:
Im not sure about Q1 but I'll help with Q2
9 =
8 =
14 =
2 =
4 =
<u>I</u><u> </u><u>h</u><u>o</u><u>p</u><u>e</u><u> </u><u>t</u><u>h</u><u>i</u><u>s</u><u> </u><u>h</u><u>e</u><u>l</u><u>p</u><u>s</u><u> </u><u>:</u><u>)</u>
<u>I</u><u>f</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>w</u><u>o</u><u>u</u><u>l</u><u>d</u><u> </u><u>l</u><u>i</u><u>k</u><u>e</u><u> </u><u>m</u><u>e</u><u> </u><u>t</u><u>o</u><u>,</u><u> </u><u>i</u><u> </u><u>w</u><u>i</u><u>l</u><u>l</u><u> </u><u>r</u><u>e</u><u>s</u><u>p</u><u>e</u><u>c</u><u>t</u><u> </u><u>y</u><u>o</u><u>u</u><u>r</u><u> </u><u>w</u><u>i</u><u>s</u><u>h</u><u>e</u><u>s</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>d</u><u>e</u><u>l</u><u>e</u><u>t</u><u>e</u><u> </u><u>m</u><u>y</u><u> </u><u>a</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u><u>.</u>
Answer:
f(x) = 4x² - 40x + 84
Step-by-step explanation:
4(x - 7)(x - 3) = 0
4(x² - 3x - 7x + 21) = 0
4(x² - 10x + 21) = 0
4x² - 40x + 84 = 0
Answer is A and B
A) -7.13 < -0.8
B) -0.86 < -0.8
C) -0.79 > -0.8
D) 0.846 > -0.8
Answer: (B)
Explanation: If you are unsure about where to start, you could always plot some numbers down until you see a general pattern.
But a more intuitive way is to determine what happens during each transformation.
A regular y = |x| will have its vertex at the origin, because nothing is changed for a y = |x| graph. We have a ray that is reflected at the origin about the y-axis.
Now, let's explore the different transformations for an absolute value graph by taking a y = |x + h| graph.
What happens to the graph?
Well, we have shifted the graph -h units, just like a normal trigonometric, linear, or even parabolic graph. That is, we have shifted the graph h units to its negative side (to the left).
What about the y = |x| + h graph?
Well, like a parabola, we shift it h units upwards, and if h is negative, we shift it h units downwards.
So, if you understand what each transformation does, then you would be able to identify the changes in the shape's location.