Well. NaOH is a base. That's the first thing you need to watch for.
So to find the pOH, you take -log(.0001)
that would be 4. So now you have the pOH and <u>you still need to find the pH
</u>To find pH from pOH, you take 14(the maximum pH,sorta)-pOH(in this case 4)
14-4=10 The pH of NaOH is 10
Answer:
There is more space between gas particles than the size of the particles.
Explanation:
This scenario can be understand by taking a very simple example. As we know that 1 mole of any gas at standard temperature and pressure occupy 22.4 liters of volume. Lets take Hydrogen gas and Oxygen gas, 1 mole of each gas will occupy same volume. Why it is so? Why same volume although Oxygen is 16 times more heavier? This is because the space between gas molecules is very large. Approximately the distance between gas molecules is 300 times greater than their own diameter from its neighbor molecules.
Question 1 answer: A
Question 2 answer: H
Question 3 answer: J
Question 4 answer: T
Answer: It's equal to 10^(-2.3), or 0.00501 M, or 5.01 * 10^-3 moles/Liter
Explanation:
Well, pH = - log[H+]
Or, in words, pH is equal to -1 multiplied by the logarithm (base 10) of the hydrogen ion concentration.
So you have 2.3 = -log[H+]. We want to isolate the H+, so let's start simplifying the right hand side of the equation. First, we multiply both sides by -1.
-2.3=log[H+]
Now, the definition of a logarithm says that if the log (base 10) of [H+] is -2.3, then 10 raised to the -2.3 power is [H+]
So on each side of the equation, we raise 10 to the power of that side of the equation.
10^(-2.3) = 10^(log[H+])
and because 10^log cancels out...
10^(-2.3) = [H+]
Now we've solved for [H+], the hydrogen ion concentration!