<span>Various gases and liquids have different densities and combustion points.</span>
For a closed system, you need two things:
1) a conservation of mass within the boundaries of the system
2) the ability to freely exchange energy to & from the "closed" system with a surrounding external system
So, the answer is <u><em>never</em></u>, since your defining the "system" as the water within the bathtub, and an open bathtub is exposed to evaporation, which is not conserving mass within the defined "system".
Answer:
- In general, polar solutes are most soluble in highly polar solvents.
Explanation:
The general rule is "like dissolves like" which means that <em>polar solvents </em>dissolve polar (or ionic) <em>solutes</em> and <em>non-polar solvents</em> dissolve non-polar solutes.
In order for a solvent dissolve a solute, the strength of the interacttion (force) between the solute and the solvent units (atoms, molecules, or ions) must be stronger than the strength of the forces that keep together he particles of the pure substances (known as intermolecular forces).
Since the nature of the interactions between the units are electrostatic, the more polar is the solvent the better it will be able to attract and surround the solute particles, keeping them separated and in solution. That mechanism explains why polar solutes will be most soluble in highly polar solvents.
Answer:
Mechanical Energy to Thermal Energy
When you strike a match, it moves through the air until it rubs against a surface. The rubbing produces the heat required to light the match. This is a transformation from mechanical energy to thermal (heat) energy.
Explanation:
The equation is L = m/M
First, covert 10. grams of AgNO3 to moles which is 0.059 moles.
Divide 0.059 moles by 0.25M which is 0.24 liters.