Answer:
PRESSURE is right answer .
Explanation:
Answer:
A = -213.09°C
B = 15014.85 °C
C = -268.37°C
Explanation:
Given data:
Initial volume of gas = 5.00 L
Initial temperature = 0°C (273 K)
Final volume = 1100 mL, 280 L, 87.5 mL
Final temperature = ?
Solution:
Formula:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Conversion of mL into L.
Final volume = 1100 mL/1000 = 1.1 L
Final volume = 87.5 mL/1000 = 0.0875 L
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = V₂T₁ / V₁
T₂ = 1.1 L × 273 K / 5.00 L
T₂ = 300.3 L.K / 5.00 K
T₂ = 60.06 K
60.06 K - 273 = -213.09°C
2)
V₁/T₁ = V₂/T₂
T₂ = V₂T₁ / V₁
T₂ = 280 L × 273 K / 5.00 L
T₂ = 76440 L.K / 5.00 K
T₂ = 15288 K
15288 K - 273 = 15014.85 °C
3)
V₁/T₁ = V₂/T₂
T₂ = V₂T₁ / V₁
T₂ = 0.0875 L × 273 K / 5.00 L
T₂ = 23.8875 L.K / 5.00 K
T₂ = 4.78 K
4.78 K - 273 = -268.37°C
Okay for 8 it is the maximum levels will be higher and for 9 is poor circulation leads to lack of nutrients and oxygen
The given question is incomplete. The complete question is:What is the relative atomic mass of a hypothetical element that consists isotopes in the indicated natural abundances.
Isotope mass amu Relative abundance
1 77.9 14.4
2 81.9 14.3
3 85.9 71.3
Express your answer to three significant figures and include the appropriate units.
Answer: 84.2 amu
Explanation:
Mass of isotope 1 = 77.9
% abundance of isotope 1 = 14.4% =
Mass of isotope 2 = 81.9
% abundance of isotope 2 = 14.3% =
Mass of isotope 3 = 85.9
% abundance of isotope 2 = 71.3% =
Formula used for average atomic mass of an element :
Therefore, the average atomic mass of a hypothetical element that consists isotopes in the indicated natural abundances is 84.2 amu
Answer:
D. Increase in UV radiation
Explanation:
I hope it helps. brainliest pls