Finish the steps below to write a quadratic function for the parabola shown. Use the vertex form, f(x) = a(x – h)2 + k, and subs
titute in the values for h and k. f(x) = a(x – 5)2 + 3 Use another point and substitute in values for x and f(x). Solve for a. 5 = a(6 – 5)2 + 3 Write the function, using the values for h, k, and a. The function is f(x) = (x – )2 + .
f(x) = a(x – h)²<span> + k we know the vertex v(5,3) </span><span>substitute in the values for h and k </span>f(x) = a(x – 5)²<span> + 3 </span><span>Use another point and substitute in values for x and f(x). for the point (6,5) </span><span>Solve for a. 5 = a(6 – 5)2 + 3-------------- > 5=a+3-------------> a=2 </span> The function is f(x)=a(x – h)2 + k-------- > 2(x – 5)² + 3 f(x)= 2(x – 5)² + 3-------- > 2[x²-10x+25]+3=2x²-20x+50+3=2x²-20x+53 f(x)=2x²-20x+53 <span> the answer is f(x)=</span> 2(x – 5)² + 3----------------- > (f(x)=2x²-20x+53)<span>