Answer:
58.5 m
Explanation:
First of all, we need to find the total time the ball takes to reach the water. This can be done by looking at the vertical motion only.
The initial vertical velocity of the ball is
where
u = 21.5 m/s is the initial speed
is the angle
Substituting,
The vertical position of the ball at time t is given by
where
h = 13.5 m is the initial heigth
is the acceleration of gravity (negative sign because it points downward)
The ball reaches the water when y = 0, so
Which gives two solutions: t = 3.27 s and t = -0.84 s. We discard the negative solution since it is meaningless.
The horizontal velocity of the ball is
And since the motion along the horizontal direction is a uniform motion, we can find the horizontal distance travelled by the ball as follows:
As we know that power is defined as rate of work done
so we will have
so in order to increase the power as per above formula we know that either we need to increase the work or we need to decrease the time to complete that work
So here the correct answer will be
increase the work being done or decrease the time in which the work is completed.
The frequency of the wave has not changed.
In fact, the frequency of a wave is given by:
where v is the wave's speed and is the wavelength.
Applying the formula:
- In air, the frequency of the wave is:
- underwater, the frequency of the wave is:
So, the frequency has not changed.
Answer:
Explanation:
Polar coordinates formula
Summary. To convert from Polar Coordinates (r,θ) to Cartesian Coordinates (x,y) : x = r × cos( θ ) y = r × sin( θ )
Pressure at a given surface is given as ratio of normal force and area
so here force due to heel of the shoes is given as 80 N
and the area of the heel is given as 16 cm^2
so we can say
here we have
F = 80 N
so pressure at the surface due to its heel will be 5 * 10^4 N/m^2