What you know:
Vi=0m/s
Vf=143.8m/s
A=-9.8m/s
d=???
Use the equation Vf^2=Vi^2+2A(d)
Rearrange to isolate d: d=Vf^2/2A
d=(143.8)^2/2(-9.8)
d=20678.4/-19.6
d=-1055m
The tank was released from a height of 1055m
As per the question Bob drops the bag full with feathers from the top of the building.
The mass of the bag(m)= 1.0 lb
Let the air resistance is neglected.As the bag is under free fall ,hence the only force that acts on the bag is the force of gravity which is in vertical downward direction.
Here the acceleration produced on bag due to the free fall will be nothing else except the acceleration due to gravity i.e g =9.8 m/s^2
Here we are asked to calculate the distance travelled by the bag at the instant 1.5 s
Hence time t= 1.5 s
From equation of kinematics we know that -
S=ut + 0.5at^2 [ here S is the distance travelled]
For motion under free fall initial velocity (u)=0.
Hence S= 0×1.5+{0.5×(-9.8)×(1.5)^2}
⇒ -S =0-11.025 m
⇒ S= 11.025 m
=11 m
Here the negative sign is taken only due to the vertical downward motion of the body .we may take is positive depending on our frame of reference .
Hence the correct option is B.
Answer:
<h3>What is the angular speed of the earth around the sun? </h3>
It takes the Earth approximately 23 hours, 56 minutes and 4.09 seconds to make one complete revolution (360 degrees). This length of time is known as a sidereal day. The Earth rotates at a moderate angular velocity of
<h3>
What is the tangential speed of the earth? </h3>
The earth rotates once every 23 hours, 56 minutes and 4.09053 seconds, called the sidereal period, and its circumference is roughly 40,075 kilometers. Thus, the surface of the earth at the equator moves at a speed of 460 meters per second--or roughly 1,000 miles per hour.
Convection is the answer i
think