2. A dilute solution means that the amount of solvent (water, for this particular case) is significantly larger than the solute (salt). Thus, the answer is D.
6. John Dalton's atomic theory states that matter is made up of tiny indestructible objects called matter. The theory also indicates that although same elements have the same atoms, each element have unique set atoms that deinfe them. From this, we can conclude that the wrong assumption is C.
9. Atoms, by default, are electrically neutral. When an atom loses or gains electron/s, then they become ionized atoms or commonly called as ions. Thus, ionized atoms imply unequal number of protons and electrons. This means the answer must be A.
11. Analgesics are commonly used to relieve pain. Thus, the answer is C.
14. Adding up the atomic mass of the individual atoms will give you the molar mass of a compound. Therefore, the answer is B.:
15. The pH scale provides us the alkalinity or acidity of a solution based on the value. A value between 0 to 6 indicates that the solution is acidic. 7 is considered neutral and a value between 7 and 14 indicates that the solution is basic. Thus, the answer is D.
19. An element has consistent properties and can no longer be further identified into having individual properties. Thus, the answer is A.
20. The valence of an element dependeds on the number of electrons on the outermost shell. Thus, it is equal to the number of charge negative or positive charges on the ion. Hence, we have A<span>.
:</span>
Need more details to the question
A) We want to find the work function of the potassium. Apply this equation:
E = 1243/λ - Φ
E = energy of photoelectron, λ = incoming light wavelength, Φ = potassium work function
Given values:
E = 2.93eV, λ = 240nm
Plug in and solve for Φ:
2.93 = 1243/240 - Φ
Φ = 2.25eV
B) We want to find the threshold wavelength, i.e. find the wavelength such that the energy E of the photoelectrons is 0eV. Plug in E = 0eV and Φ = 2.25eV and solve for the threshold wavelength λ:
E = 1243/λ - Φ
0 = 1243/λ - Φ
0 = 1243/λ - 2.25
λ = 552nm
C) We want to find the frequency associated with the threshold wavelength. Apply this equation:
c = fλ
c = speed of light in a vacuum, f = frequency, λ = wavelength
Given values:
c = 3×10⁸m/s, λ = 5.52×10⁻⁷m
Plug in and solve for f:
3×10⁸ = f(5.52×10⁻⁷)
f = 5.43×10¹⁴Hz
The correct answer should be A
The answer is:
It is a measure of the strength of the bonds between ions.
Lattice energy is an estimate of the strength of the bonds formed by ionic compounds.
The first two choices are wrong because it is actually the opposite.
- As the ion size increases, lattice energy <u>decreases</u>.
- As charge of ions increases, lattice energy <u>increases</u>
As for the other third option, it is wrong because lattice energy is the energy RELEASED not absorbed.