False
Although we use many of their ideas to describe atoms today, such as the existence of a tiny, dense nucleus in an atom (proposed by Rutherford), or the notion that all atoms of an element are identical (proposed by Dalton), some of their ideas have been rejected by the modern theory of the atom.
For example, Thompson came up with the plum pudding model to describe an atom, which resembled a sphere of positive charge with electrons embedded in it. We know now, however, that atoms are mostly empty space with a tiny, dense nucleus.
Another example is Dalton's atomic theory, which stated that atoms are indivisible particles. However, this was disproved by the discovery of subatomic particles.
Displacement reaction is a chemical reaction in which a more reactive element displaces a less reactive element from its compound. Both metals and non-metals take part in displacement reactions. Example : Reaction of iron nails with copper sulphate solution.
Magnetic moment (spin only) of octahedral complex having CFSE=−0.8Δo and surrounded by weak field ligands can be : Q
To answer this, the Crystal Field Stabilization Energy has to be calculated for a (d3 metal in both configurations. The geometry with the greater stabilization will be the preferred geometry. So for tetrahedral d3, the Crystal Field Stabilization Energy is: CFSE = -0.8 x 4/9 Δo = -0.355 Δo.
[Co(CN)64-] is also an octahedral d7 complex but it contains CN-, a strong field ligand. Its orbital occupancy is (t2g)6(eg)1 and it therefore has one unpaired electron. In this case the CFSE is −(6)(25)ΔO+(1)(35)ΔO+P=−95ΔO+P.
The crystal field stabilization energy (CFSE) (in kJ/mol) for complex, [Ti(H2O)6]3+. According to CFT, the first absorption maximum is obtained at 20,3000cm−1 for the transition.
To learn more about crystal field stabilization energy visit:brainly.com/question/29389010
#SPJ4
Its 100% B. my dude because the atomic theory doesn't state anything else