Answer:
O It has the same slope and a different y-intercept.
Step-by-step explanation:
y = mx + b
m = 3/8
b = 12
y = (3/8)x + 12
---
Data in the table: slope is the rise (y) over the run (x) between two points (assuming the data represent a linear line).
Change in x and y between two points. I'll choose (-2/3,-3/4) and (1/3,-3/8).
Change in y: (-3/8 - (-3/4)) = (-3/8 - (-6/8)) = 3/8
Change in x: (1/3 - (-2/3)) = (1/3+2/3) = 3/3 = 1
Slope = (Change in y)/(Change in x) = (3/8)/1 = 3/8
The slope of the equation is the same as the data in the table.
Now let's determine if the y-intercept is also the same (12). The equation for the data table is y = (2/3)x + b, and we want to find b. Enter any of the data points for x and y and then solve for b. I'll use (-2/3, -3/4)
y = (3/8)x + b
Use (-2/3, -3/4)
-3/4 =- (3/8)(-2/3) + b
-3/4 = (-6/24) + b
b = -(3/4) + (6/24)
b = -(9/12) + (3/12)
b = -(6/12)
b = -(1/2)
The equation of the line formed by the data table is y = (3/8)x -(1/2)
Therefore, It has the same slope and a different y-intercept.
500 + 500 = 1000 I hope I helped
Cross multiply
3(2x + 1) = 5(2x - 5)
expand by using distributive property
6x + 3 = 10x - 25
-4x = - 28
x = 7
Answer:
A=a2=3.42≈11.56
Step-by-step explanation:
i believe
<em>Hey </em><em>mate!</em><em>!</em>
<em>Answer:</em>
<em>n(</em><em>A)</em><em>=</em><em>1</em><em>2</em>
<em>Solution</em><em>,</em>
<em>A=</em><em>{</em><em>3</em><em>,</em><em>6</em><em>,</em><em>9</em><em>,</em><em>1</em><em>2</em><em>,</em><em>1</em><em>5</em><em>,</em><em>1</em><em>8</em><em>,</em><em>2</em><em>1</em><em>,</em><em>2</em><em>4</em><em>,</em><em>2</em><em>7</em><em>,</em><em>3</em><em>0</em><em>,</em><em>3</em><em>3</em><em>,</em><em>3</em><em>6</em><em>}</em>
<em>Just </em><em>count </em><em>the </em><em>elements</em><em>,</em>
<em>There </em><em>are </em><em>1</em><em>2</em><em> </em><em>elements </em><em>in </em><em>the </em><em>set.</em>
<em>So </em><em>the </em><em>cardinal </em><em>number </em><em>of </em><em>the </em><em>set </em><em>is </em><em>1</em><em>2</em><em>.</em>
<h2>
<em>Hope </em><em>it </em><em>helps.</em><em>.</em><em>.</em></h2>