Answer:
The value of third charge is 0.8μC.
Explanation:
Given that.
Magnitude of net force=4.444 N
According to figure,
Suppose, First charge = 2.4 μC
Second charge = 6.2 μC
Distance r₁ = 9.8 cm
Distance r₂ = 2.1 cm
We need to calculate the value of r
Using Pythagorean theorem
Put the value into the formula
We need to calculate the force
Using formula of force
Force F₁₂,
Force F₂₃,
We need to calculate the value of third charge
Hence, The value of third charge is 0.8μC.
Answer:
As point B is located inside the copper block so net electric field at point B is j.
Explanation:
Consider the figure attached below. The net electric field at location B,that is inside the copper block is zero because when a conductor is charged or placed in an electric field of external charges, net charge lies on the surface of conductor and there is no electric field inside the conductor. As point B is located inside the copper block so net electric field at point B is zero as well direction of net electric field at point B is zero.
Answer:
57,42 KJ
Explanation:
By a isobaric proces, the expresion for the works in the jpg adjunt. Then:
W = Pa(Vb - Va) = Pa*Vb - Pa*Va ---(1)
By the ideal gases law: PV=RTn
Then, in (1): (remember Pa = Pb)
W = R*Tb*n - R*T*an = R*n*(Tb - Ta) --- (2)
Since we have 1 Kg air: How much is this in moles?
From bibliography: 28.96 g/mol
Then, in 1 Kg (1000 g) there are:
n = 34,53 mol
Finally, in (2):
W = (8,3144 J/K.mol)*(34,53 mol)*(500K - 300K) = 51 419,9 J ≈ 57,42 KJ
Answer:
v = 5.166 10² m / s
Explanation:
We can solve this exercise using the kinematics equations
v = v₀ + at
as the bullet starts from rest its initial velocity is zero
v = a t
let's calculate
v = 6.3 10⁵ 8.2 10⁻⁴
v = 5.166 10² m / s
The correct answer is decreases
The further away you are the weaker it would be. That's why at one point you stop being in the field and ti doesn't pull you towards it anymore. Proportionally, if you move towards the Earth then it increases.